1.	(a)	Recognizing an AP $u_1 = 15$ $d = 2$ $n = 20$ substituting into $u_{20} = 15 + (20 - 1) \times 2$ = 53 (that is, 53 seats in the 20th row)	(M1) (A1) M1 A1	4	
	(b)	Substituting into $S_{20} = \frac{20}{2} (2(15) + (20-1)2)$ (or into $\frac{20}{2} (15 + 53)$)	M1		
		= 680 (that is, 680 seats in total)	A1	2	[6]
2.	(a)	$5000(1.063)^n$	A1	1	
	(b)	Value = $$5000(1.063)^5$ (= $$6786.3511$) = $$6790$ to 3 sf (Accept \$6786, or \$6786.35)		1	
	(c)	(i) $5000(1.063)^n > 10000 \text{ or } (1.063)^n > 2$	A1	1	
		(ii) Attempting to solve the inequality $\langle \log (1.063) \rangle \log 2$ n > 11.345 12 years	(M1) (A1) A1	3	
		<i>Note:</i> Candidates are likely to use TABLE or LIST on a GDC to find n. A good way of communicating this is suggested below.		C	
		Let $y = 1.063^x$	(M1)		
		when $x = 11$, $y = 1.9582$, when $x = 12$, $y = 2.0816$ x = 12 ie 12 years	(A1) A1	3	[6]
3.	(a)	$u_1 = S_1 = 7$	(A1)	(C1)	
	(b)	$u_2 = S_2 - u_1 = 18 - 7$			
		=11	(A1)		
		<i>d</i> = 11 – 7	(M1)		
		= 4	(A1)	(C3)	
	(c)	$u_4 = u_1 + (n-1)d = 7 + 3(4)$	(M1)		
		<i>u</i> ₄ = 19	(A1)	(C2)	[4]

4. For using
$$u_3 = u_1 r^2 = 8$$
 (M1)

$$8 = 18r^2 \tag{A1}$$

$$r^{2} = \frac{8}{18} \left(= \frac{4}{9} \right)$$

$$r = \pm \frac{2}{3}$$
(A1)(A1)

$$S_{\infty} = \frac{u_1}{1-r},$$

 $S_{\infty} = 54, \frac{54}{5} (=10.8)$ (A1)(A1)(C3)(C3)

5. Neither (a) (i)

- Geometric series (ii)
- (iii) Arithmetic series
- (C3) (iv) Neither *Note:* Award (A1) for geometric correct, (A1) for arithmetic correct and (A1) for **both** "neither". These may be implied by blanks only if GP and AP correct.

(Series (ii) is a GP with a sum to infinity) (b)

Common ratio $\frac{3}{3}$

Common ratio
$$\frac{3}{4}$$
 (A1)

$$S_{\infty} = \frac{a}{1-r} \left(= \frac{1}{1-\frac{3}{4}} \right)$$

$$= 4$$
 (A1) (C3)

Note: Do not allow ft from an incorrect series.

[6]

6. \$11400, \$11800 (a) (i) (A1) 1

(ii) Total salary
$$=\frac{10}{2}(2 \times 11000 + 9 \times 400)$$
 (A1)
= \$128000

(b) (i) \$10700, \$11449 (A1)(A1)

(ii)
$$10^{\text{th}} \text{ year salary } = 10\,000(1.07)^9$$
 (A1)

$$= \$18384.59 \text{ or } \$18400 \text{ or } \$18385 \tag{A1}(N2) \qquad 4$$

(c) **EITHER**

Scheme A
$$S_{\rm A} = \frac{n}{2} (2 \times 11000 + (n-1)400)$$
 (A1)

Scheme B
$$S_{\rm B} = \frac{10\,000\,(1.07^n - 1)}{1.07 - 1}$$
 (A1)

Solving $S_{\rm B} > S_{\rm A}$ (accept $S_{\rm B} = S_{\rm A}$, giving n = 6.33) (may be implied) (M1)

$$\begin{array}{c} \text{Minimum value of } n \text{ is 7 years.} \\ \text{(A1)} \end{array} \tag{N2}$$

Using trial and error

	Arturo	Bill
6 years	\$72 000	\$71532.91
7 years	\$85 400	\$86 540.21

(A1)(A1) **Note:** Award (A1) for **bot**h values for 6 years, and (A1) for **both** values for 7 years.

Therefore, minimum number of years is 7.

7. Arithmetic sequence d = 3 (may be implied) n = 1250 (M1)(A1) $S = \frac{1250}{2}(3 + 3750)$ (or $S = \frac{1250}{2}(6 + 1249 \times 3)$) (M1) = 2345625 (A1) (C6)

[6]

8. Arithmetic sequence(M1)a = 200d = 30(A1)(a) Distance in final week = $200 + 51 \times 30$ (M1)= 1730 m(A1) (C3)

(A1) (N2) 4 [11]

(b) Total distance =
$$\frac{52}{2}$$
 [2.200 + 51.30] (M1)
= 50180 m (A1) (C3)

9. (a) (i) Area B =
$$\frac{1}{16}$$
, area C = $\frac{1}{64}$ (A1)(A1)

(ii)
$$\frac{\frac{1}{16}}{\frac{1}{4}} = \frac{1}{4} \quad \frac{\frac{1}{64}}{\frac{1}{16}} = \frac{1}{4}$$
 (Ratio is the same.) (M1)(R1)

(iii) Common ratio =
$$\frac{1}{4}$$
 (A1) 5

(b) (i) Total area
$$(S_2) = \frac{1}{4} + \frac{1}{16} = \frac{5}{16} = (= 0.3125) (0.313, 3 \text{ sf})$$
 (A1)

(ii) Required area =
$$S_8 = \frac{\frac{1}{4} \left(1 - \left(\frac{1}{4}\right)^8 \right)}{1 - \frac{1}{4}}$$
 (M1)

$$= 0.333328 2(471...)$$
(A1)
= 0.333328 (6 sf) (A1) 4

Note: Accept result of adding together eight areas correctly.

(c) Sum to infinity =
$$\frac{\frac{1}{4}}{1 - \frac{1}{4}}$$
 (A1)
= $\frac{1}{3}$ (A1) 2 [11]

10. (a)
$$u_4 = u_1 + 3d \text{ or } 16 = -2 + 3d$$
 (M1)
 $d = \frac{16 - (-2)}{4}$ (M1)

$$3 = 6$$
 (A1) (C3)

(b)
$$u_n = u_1 + (n-1)6 \text{ or } 11998 = -2 + (n-1)6$$
 (M1)
 $n = \frac{11998 + 2}{6} + 1$ (A1)
 $= 2001$ (A1) (C3)

11. (a) Ashley
AP
$$12 + 14 + 16 + ...$$
 to 15 terms (M1)
 $S_{15} = \frac{15}{2} [2(12) + 14(2)]$ (M1)
 $= 15 \times 26$

$$= 14.52 \text{ hours}$$
 (AG)

(ii)
$$S_{15} = \frac{12[(1.1)^{15} - 1]}{1.1 - 1}$$
 (M1)
= 381 hours (3 sf) (A1) 4

(c)
$$12 (1.1)^{n-1} > 50$$
 (M1)
 $(1.1)^{n-1} > \frac{50}{2}$

$$(1.1)^{n-1} > \frac{1}{12}$$
(A1)
(n-1) ln 1 1 > ln $\frac{50}{12}$

$$n-1 > \frac{\ln \frac{50}{12}}{\ln 1.1}$$
(A1)
$$n-1 > 14.97$$

$$n > 15.97$$

$$\Rightarrow \text{Week 16} \tag{A1}$$

OR

$$12(1.1)^{n-1} > 50$$
 (M1)

 By trial and error
 (A1)

 $12(1.1)^{14} = 45.6, 12(1.1)^{15} = 50.1$
 (A1)

 $\Rightarrow n - 1 = 15$
 (A1)

 $\Rightarrow n = 16$ (Week 16)
 (A1)

[11]

12. (a)
$$u_1 = 7, d = 2.5$$
 (M1)
 $u_{41} = u_1 + (n-1)d = 7 + (41-1)2.5$
 $= 107$ (A1) (C2)

(b)
$$S_{101} = \frac{n}{2} [2u_1 + (n-1)d]$$

 $= \frac{101}{2} [2(7) + (101 - 1)2.5]$ (M1)
 $= \frac{101(264)}{2}$
 $= 13332$ (A1) (C2) [4]

13. (a)
$$r = \frac{360}{240} = \frac{240}{160} = \frac{3}{2} = 1.5$$
 (A1) 1

(b) 2002 is the 13th year. (M1)

$$u_{13} = 160(1.5)^{13-1}$$
 (M1)
 $= 20759$ (Accept 20760 or 20800.) (A1) 3

(c)
$$5000 = 160(1.5)^{n-1}$$

 $\frac{5000}{160} = (1.5)^{n-1}$ (M1)

$$\log\left(\frac{5000}{160}\right) = (n-1)\log 1.5 \tag{M1}$$

$$n - 1 = \frac{\log\left(\frac{5000}{160}\right)}{\log 1.5} = 8.49$$
(A1)

$$\Rightarrow n = 9.49 \Rightarrow 10^{\text{th}} \text{ year}$$
$$\Rightarrow 1999 \tag{A1}$$

OR

Using a gdc with
$$u_1 = 160$$
, $u_{k+1} = \frac{3}{2}u_k$, $u_9 = 4100$, $u_{10} = 6150$ (M2)
1999 (G2) 4

(d)
$$S_{13} = 160 \left[\frac{1.5^{13} - 1}{1.5 - 1} \right]$$
 (M1)

$$= 61958 (Accept 61960 \text{ or } 62000.) \tag{A1}$$

(e)	Nearly everyone would have bought a portable telephone so therewould be fewer people left wanting to buy one.(R1)				
	OR				
	Sales would saturate.	(R1)	1		

14. (a)
$$a_1 = 1000, a_n = 1000 + (n-1)250 = 10000$$
 (M1)
 $n = \frac{10000 - 1000}{250} + 1 = 37.$
She runs 10 km on the 37th day. (A1)

(b)
$$S_{37} = \frac{37}{2} (1000 + 10000)$$
 (M1)

She has run a total of 203.5 km (A1)

[4]

[11]

15.
$$a = 5$$

 $a + 3d = 40$ (may be implied) (M1)
 $d = \frac{35}{3}$ (A1)
 $T_2 = 5 + \frac{35}{3}$ (A1)

$$= 16\frac{2}{3} \text{ or } \frac{50}{3} \text{ or } 16.7 (3 \text{ sf})$$
(A1) (C4)

[4]

[4]

16.
$$S = \frac{u_1}{1-r} = \frac{\frac{2}{3}}{1-\left(-\frac{2}{3}\right)}$$
 (M1)(A1)
= $\frac{2}{3} \times \frac{3}{5}$ (A1)
= $\frac{2}{5}$ (A1) (C4)

17. (a)Plan A: 1000, 1080, 1160...Plan B: 1000, 1000(1.06), $1000(1.06)^2...$
2nd month: \$1060, 3rd month: \$1123.60(A1)(A1)2

(b) For Plan A,

$$T_{12} = a + 11d$$

 $= 1000 + 11(80)$ (M1)
 $= 1880 (A1)
For Plan B,
 $T_{12} = 1000(1.06)^{11}$ (M1)
 $= 1898 (to the nearest dollar) (A1) 4

(c) (i) For Plan A,
$$S_{12} = \frac{12}{2} [2000 + 11(80)]$$
 (M1)
= 6(2880)
= \$17280 (to the nearest dollar) (A1)

(ii) For Plan B,
$$S_{12} = \frac{1000(1.06^{12} - 1)}{1.06 - 1}$$
 (M1)
= \$16870 (to the nearest dollar) (A1) 4

[10]

18. (a)
$$\$1000 \times 1.075^{10} = \$2061$$
 (nearest dollar) (A1) (C1)

(b)	$1000(1.075^{10} + 1.075^9 + + 1.075)$	(M1)	
	$=\frac{1000(1.075)(1.075^{10}-1)}{1.075-1}$	(M1)	
	= \$15208 (nearest dollar)	(A1) (C3)	
			[4]

19.
$$17 + 27 + 37 + \dots + 417$$

 $17 + (n-1)10 = 417$ (M1)
 $10(n-1) = 400$
 $n = 41$ (A1)
 $S_{41} = \frac{41}{2}(2(17) + 40(10))$
 $= 41(17 + 200)$
 $= 8897$ (A1)

$$S_{41} = \frac{41}{2}(17 + 417)$$
(M1)
= $\frac{41}{2}(434)$
= 8897 (A1) (C4)

[4]

(A1)

20.
$$S_5 = \frac{5}{2} \{2 + 32\}$$
 (M1)(A1)(A1)
 $S_5 = 85$ (A1)
OR
 $a = 2, a + 4d = 32$ (M1)
 $\Rightarrow 4d = 30$
 $d = 7.5$ (A1)
 $S_5 = \frac{5}{2} (4 + 4(7.5))$ (M1)
 $= \frac{5}{2} (4 + 30)$
 $S_5 = 85$ (A1) (C4)

[4]