1. (a) Recognizing an AP
(M1)
(A1) 4
$u_{1}=15 \quad d=2 \quad n=20$
substituting into $u_{20}=15+(20-1) \times 2$
(b) Substituting into $S_{20}=\frac{20}{2}(2(15)+(20-1) 2)$ (or into $\left.\frac{20}{2}(15+53)\right)$ $=680$ (that is, 680 seats in total)
2. (a) $5000(1.063)^{n}$
(b) Value $=\$ 5000(1.063)^{5} \quad(=\$ 6786.3511 \ldots)$
$=\$ 6790$ to 3 sf (Accept $\$ 6786$, or $\$ 6786.35$)
A1 1
(c) (i) $\quad 5000(1.063)^{n}>10000$ or $(1.063)^{n}>2$

A1 1
(ii) Attempting to solve the inequality $« \log (1.063)>\log 2$ $n>11.345 .$. .
(M1)
(A1)
A1 3
Note: Candidates are likely to use TABLE or LIST on a GDC to find n. A good way of communicating this is suggested below.

$$
\begin{align*}
& \text { Let } y=1.063^{x} \\
& \text { When } x=11, y=1.9582 \text {, when } x=12, y=2.0816 \\
& x=12 \text { ie } 12 \text { years }
\end{align*}
$$

[6]

3. (a) $u_{1}=S_{1}=7$
(A1) (C1)
(b) $u_{2}=S_{2}-u_{1}=18-7$

$$
\begin{equation*}
=11 \tag{A1}
\end{equation*}
$$

$$
\begin{array}{r}
d=11-7 \tag{M1}\\
=4
\end{array}
$$

(A1) (C3)
(c) $\quad u_{4}=u_{1}+(n-1) d=7+3(4)$

$$
\begin{equation*}
u_{4}=19 \tag{M1}
\end{equation*}
$$

4. For using $u_{3}=u_{1} r^{2}=8$

$$
\begin{align*}
8 & =18 r^{2} \tag{A1}\\
r^{2} & =\frac{8}{18}\left(=\frac{4}{9}\right) \\
r & = \pm \frac{2}{3} \tag{A1}\\
S_{\infty} & =\frac{u_{1}}{1-r} \\
S_{\infty} & =54, \frac{54}{5}(=10.8)
\end{align*}
$$

(A1)(A1)(C3)(C3)
5. (a) (i) Neither
(ii) Geometric series
(iii) Arithmetic series
(iv) Neither
(C3)
Note: Award (A1) for geometric correct, (A1) for arithmetic correct and (A1) for both "neither". These may be implied by blanks only if GP and AP correct.
(b) (Series (ii) is a GP with a sum to infinity)

Common ratio $\frac{3}{4}$
$S_{\infty}=\frac{a}{1-r}\left(=\frac{1}{1-\frac{3}{4}}\right)$
$=4$
(A1) (C3)
Note: Do not allow ft from an incorrect series.
6. (a) (i) $\$ 11400, \$ 11800$
(A1) 1
(ii) Total salary $=\frac{10}{2}(2 \times 11000+9 \times 400)$
$=\$ 128000$
(A1)
(A1)
(N2) 2
(b) (i) $\$ 10700, \$ 11449$
(A1)(A1)
(ii) $10^{\text {th }}$ year salary $=10000(1.07)^{9}$
(A1)
(A1)(N2) 4
(A1)(N2) 4
(c) EITHER

Scheme A $\quad S_{\mathrm{A}}=\frac{n}{2}(2 \times 11000+(n-1) 400)$
Scheme B $\quad S_{\mathrm{B}}=\frac{10000\left(1.07^{n}-1\right)}{1.07-1}$
Solving $S_{\mathrm{B}}>S_{\mathrm{A}}$ (accept $S_{\mathrm{B}}=S_{\mathrm{A}}$, giving $n=6.33$) (may be implied)(M1)
Minimum value of n is 7 years. (A1)

OR

Using trial and error

	Arturo	Bill
6 years	$\$ 72000$	$\$ 71532.91$
7 years	$\$ 85400$	$\$ 86540.21$

(A1)(A1)
Note: Award (A1) for both values for 6 years, and (A1) for both values for 7 years.

Therefore, minimum number of years is 7 .
(A1) (N2) 4
7. Arithmetic sequence $d=3$ (may be implied)

$$
\begin{align*}
n & =1250 \tag{A2}\\
S & =\frac{1250}{2}(3+3750) \quad\left(\text { or } S=\frac{1250}{2}(6+1249 \times 3)\right) \tag{M1}\\
& =2345625
\end{align*}
$$

(A1) (C6)
[6]
8. Arithmetic sequence

$$
\begin{equation*}
a=200 \quad d=30 \tag{M1}
\end{equation*}
$$

(a) Distance in final week $=200+51 \times 30$

$$
\begin{equation*}
=1730 \mathrm{~m} \tag{M1}
\end{equation*}
$$

(A1) (C3)
(b) Total distance $=\frac{52}{2}[2.200+51.30]$

$$
\begin{equation*}
=50180 \mathrm{~m} \tag{M1}
\end{equation*}
$$

Note: Penalize once for absence of units ie award A0 the first time units are omitted, A1 the next time.
9. (a) (i) \quad Area $B=\frac{1}{16}, \quad$ area $\mathrm{C}=\frac{1}{64}$
(A1)(A1)
(ii) $\frac{\frac{1}{16}}{\frac{1}{4}}=\frac{1}{4} \quad \frac{\frac{1}{64}}{\frac{1}{16}}=\frac{1}{4}$ (Ratio is the same.)
(M1)(R1)
(iii) Common ratio $=\frac{1}{4}$
(A1) 5
(b) (i) Total area $\left(S_{2}\right)=\frac{1}{4}+\frac{1}{16}=\frac{5}{16}=(=0.3125)(0.313,3 \mathrm{sf})$
(ii) Required area $=S_{8}=\frac{\frac{1}{4}\left(1-\left(\frac{1}{4}\right)^{8}\right)}{1-\frac{1}{4}}$

$$
\begin{align*}
& =0.3333282(471 \ldots) \tag{A1}\\
& =0.333328(6 \mathrm{sf})
\end{align*}
$$

Note: Accept result of adding together eight areas correctly.
(c) Sum to infinity $=\frac{\frac{1}{4}}{1-\frac{1}{4}}$

$$
\begin{equation*}
=\frac{1}{3} \tag{A1}
\end{equation*}
$$

10. (a) $u_{4}=u_{1}+3 d$ or $16=-2+3 d$
(M1)

$$
\begin{align*}
d & =\frac{16-(-2)}{3} \tag{M1}\\
& =6
\end{align*}
$$

(A1) (C3)
(b) $u_{n}=u_{1}+(n-1) 6$ or $11998=-2+(n-1) 6$
(A1) (C3)

[6]

11. (a) Ashley

$$
\begin{align*}
& \text { AP } 12+14+16+\ldots \text { to } 15 \text { terms } \tag{M1}\\
& S_{15}=\frac{15}{2}[2(12)+14(2)] \tag{M1}\\
& =15 \times 26 \\
& =390 \text { hours }
\end{align*}
$$

(A1) 3
(b) Billie

$$
\begin{equation*}
\text { GP } \quad 12,12(1.1), 12(1.1)^{2} \ldots \tag{M1}
\end{equation*}
$$

(i) In week $3,12(1.1)^{2}$

$$
\begin{equation*}
=14.52 \text { hours } \tag{A1}
\end{equation*}
$$

(ii) $\quad S_{15}=\frac{12\left[(1.1)^{15}-1\right]}{1.1-1}$

$$
\begin{equation*}
=381 \text { hours (} 3 \mathrm{sf} \text {) } \tag{M1}
\end{equation*}
$$

(A1) 4
(c) $12(1.1)^{n-1}>50$

$$
\begin{equation*}
(1.1)^{n-1}>\frac{50}{12} \tag{A1}
\end{equation*}
$$

$(n-1) \ln 1.1>\ln \frac{50}{12}$
$n-1>\frac{\ln \frac{50}{12}}{\ln 1.1}$
$n-1>14.97$

$$
\begin{equation*}
n>15.97 \tag{A1}
\end{equation*}
$$

\Rightarrow Week 16

OR

$12(1.1)^{n-1}>50$
By trial and error
$12(1.1)^{14}=45.6,12(1.1)^{15}=50.1$
$\Rightarrow n-\mathrm{l}=15$
$\Rightarrow n=16$ (Week 16)
(A1) 4
[11]
12. (a) $u_{1}=7, d=2.5$

$$
\begin{equation*}
u_{41}=u_{1}+(n-1) d=7+(41-1) 2.5 \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
=107 \tag{A1}
\end{equation*}
$$

(b) $\quad S_{101}=\frac{n}{2}\left[2 u_{1}+(n-1) d\right]$

$$
\begin{align*}
& =\frac{101}{2}[2(7)+(101-1) 2.5] \tag{M1}\\
& =\frac{101(264)}{2} \\
& =13332 \tag{A1}
\end{align*}
$$

[4]
13. (a) $r=\frac{360}{240}=\frac{240}{160}=\frac{3}{2}=1.5$
(b) 2002 is the $13^{\text {th }}$ year.
$u_{13}=160(1.5)^{13-1}$
$=20759$ (Accept 20760 or 20800 .)
(A1) 3
(c) $5000=160(1.5)^{n-1}$
$\frac{5000}{160}=(1.5)^{n-1}$
$\log \left(\frac{5000}{160}\right)=(n-1) \log 1.5$
$n-1=\frac{\log \left(\frac{5000}{160}\right)}{\log 1.5}=8.49$
$\Rightarrow n=9.49 \Rightarrow 10^{\text {th }}$ year

$$
\begin{equation*}
\Rightarrow 1999 \tag{A1}
\end{equation*}
$$

OR
Using a gdc with $u_{1}=160, u_{k+1}=\frac{3}{2} u_{k}, u_{9}=4100, u_{10}=6150$ 1999
(d) $S_{13}=160\left[\frac{1.5^{13}-1}{1.5-1}\right]$
$=61958$ (Accept 61960 or 62000.)
(A1) 2
(e) Nearly everyone would have bought a portable telephone so there would be fewer people left wanting to buy one.
OR
Sales would saturate.
(R1) 1
14. (a) $a_{1}=1000, a_{n}=1000+(n-1) 250=10000$
$n=\frac{10000-1000}{250}+1=37$.
She runs 10 km on the 37th day.
(b) $S_{37}=\frac{37}{2}(1000+10000)$

She has run a total of 203.5 km
15. $a=5$
$a+3 d=40$ (may be implied)
$d=\frac{35}{3}$
$T_{2}=5+\frac{35}{3}$
$=16 \frac{2}{3}$ or $\frac{50}{3}$ or $16.7(3 \mathrm{sf})$
(A1) (C4)
16. $S=\frac{u_{1}}{1-r}=\frac{\frac{2}{3}}{1-\left(-\frac{2}{3}\right)}$
(M1)(A1)
$=\frac{2}{3} \times \frac{3}{5}$
$=\frac{2}{5}$
(A1) (C4)
17. (a) Plan A: 1000, 1080, 1160... Plan B: 1000, 1000(1.06), 1000(1.06) ${ }^{2} \ldots$

2nd month: \$1060, 3rd month: \$1123.60
(A1)(A1) 2
(b) For Plan A, $\quad \mathrm{T}_{12}=a+11 d$

$$
\begin{equation*}
=1000+11(80) \tag{M1}
\end{equation*}
$$

= \$1880
(A1)
For Plan $B, \quad T_{12}=1000(1.06)^{11}$
$=\$ 1898$ (to the nearest dollar)
(A1) 4
(c) (i) For Plan $\mathrm{A}, \quad \mathrm{S}_{12}=\frac{12}{2}[2000+11(80)]$

$$
\begin{align*}
& =6(2880) \tag{M1}\\
& =\$ 17280 \text { (to the nearest dollar) } \tag{A1}
\end{align*}
$$

(ii) For Plan $\mathrm{B}, \quad \mathrm{S}_{12}=\frac{1000\left(1.06^{12}-1\right)}{1.06-1}$

> = \$16870 (to the nearest dollar)
(A1) 4
18. (a) $\$ 1000 \times 1.075^{10}=\$ 2061$ (nearest dollar)
(A1) (C1)
(b) $1000\left(1.075^{10}+1.075^{9}+\ldots+1.075\right)$
$=\frac{1000(1.075)\left(1.075^{10}-1\right)}{1.075-1}$
$=\$ 15208$ (nearest dollar)
(A1) (C3)
[4]
19. $17+27+37+\ldots+417$
$17+(n-1) 10=417$
$10(n-1)=400$
$n=41$
$S_{41}=\frac{41}{2}(2(17)+40(10))$
$=41(17+200)$
$=8897$

OR

$S_{41}=\frac{41}{2}(17+417)$
$=\frac{41}{2}(434)$
$=8897$
(A1) (C4)

[4]

20. $S_{5}=\frac{5}{2}\{2+32\}$
$S_{5}=85$
OR
$a=2, a+4 d=32$
$\Rightarrow 4 d=30$

$$
\begin{equation*}
d=7.5 \tag{M1}
\end{equation*}
$$

$S_{5}=\frac{5}{2}(4+4(7.5))$
$=\frac{5}{2}(4+30)$
$S_{5}=85$
(A1) (C4)

