1. A theatre has 20 rows of seats. There are 15 seats in the first row, 17 seats in the second row, and each successive row of seats has two more seats in it than the previous row.
(a) Calculate the number of seats in the $20^{\text {th }}$ row.
(b) Calculate the total number of seats.
(Total 6 marks)
2. A sum of $\$ 5000$ is invested at a compound interest rate of 6.3% per annum.
(a) Write down an expression for the value of the investment after n full years.
(b) What will be the value of the investment at the end of five years?
(c) The value of the investment will exceed $\$ 10000$ after n full years,
(i) Write down an inequality to represent this information.
(ii) Calculate the minimum value of n.
(Total 6 marks)
3. Let S_{n} be the sum of the first n terms of an arithmetic sequence, whose first three terms are u_{1}, u_{2} and u_{3}. It is known that $S_{1}=7$, and $S_{2}=18$.
(a) Write down u_{1}.
(b) Calculate the common difference of the sequence.
(c) Calculate u_{4}.

Answers:
(a) \qquad
(b) \qquad
(c) \qquad
4. The first term of an infinite geometric sequence is 18 , while the third term is 8 . There are two possible sequences. Find the sum of each sequence.
\square
5. The following table shows four series of numbers. One of these series is geometric, one of the series is arithmetic and the other two are neither geometric nor arithmetic.
(a) Complete the table by stating the type of series that is shown.

Series		Type of series
(i)	$1+11+111+1111+11111+\ldots$	
(ii)	$1+\frac{3}{4}+\frac{9}{16}+\frac{27}{64}+\ldots$	
(iii)	$0.9+0.875+0.85+0.825+0.8+\ldots$	
(iv)	$\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}+\ldots$	

(b) The geometric series can be summed to infinity. Find this sum.

Answer:
(b)
(Total 6 marks)
6. A company offers its employees a choice of two salary schemes A and B over a period of 10 years.

Scheme A offers a starting salary of $\$ 11000$ in the first year and then an annual increase of $\$ 400$ per year.
(a) (i) Write down the salary paid in the second year and in the third year.
(ii) Calculate the total (amount of) salary paid over ten years.

Scheme B offers a starting salary of $\$ 10000$ dollars in the first year and then an annual increase of 7% of the previous year's salary.
(b) (i) Write down the salary paid in the second year and in the third year.
(ii) Calculate the salary paid in the tenth year.
(c) Arturo works for n complete years under scheme A. Bill works for n complete years under scheme B. Find the minimum number of years so that the total earned by Bill exceeds the total earned by Arturo.
7. Gwendolyn added the multiples of 3 , from 3 to 3750 and found that

$$
3+6+9+\ldots+3750=s .
$$

Calculate s.
\square
Answer:
\qquad
(Total 6 marks)
8. Arturo goes swimming every week. He swims 200 metres in the first week. Each week he swims 30 metres more than the previous week. He continues for one year (52 weeks).
(a) How far does Arturo swim in the final week?
(b) How far does he swim altogether?
\square
Answers:
(a)
(b) \qquad
9. The diagrams below show the first four squares in a sequence of squares which are subdivided in half. The area of the shaded square A is $\frac{1}{4}$.

Diagram 1

Diagram 3

Diagram 2

Diagram 4
(a) (i) Find the area of square B and of square C.
(ii) Show that the areas of squares A, B and C are in geometric progression.
(iii) Write down the common ratio of the progression.
(b) (i) Find the total area shaded in diagram 2.
(ii) Find the total area shaded in the $8^{\text {th }}$ diagram of this sequence.

Give your answer correct to six significant figures.
(c) The dividing and shading process illustrated is continued indefinitely. Find the total area shaded.
10. In an arithmetic sequence, the first term is -2 , the fourth term is 16 , and the $n^{\text {th }}$ term is 11998 .
(a) Find the common difference d.
(b) Find the value of n.

Answers:
(a) \qquad
(b) \qquad
(Total 6 marks)
11. Ashley and Billie are swimmers training for a competition.
(a) Ashley trains for 12 hours in the first week. She decides to increase the amount of time she spends training by 2 hours each week. Find the total number of hours she spends training during the first 15 weeks.
(b) Billie also trains for 12 hours in the first week. She decides to train for 10% longer each week than the previous week.
(i) Show that in the third week she trains for 14.52 hours.
(ii) Find the total number of hours she spends training during the first 15 weeks.
(c) In which week will the time Billie spends training first exceed 50 hours?
12. The first three terms of an arithmetic sequence are 7, 9.5, 12 .
(a) What is the $41^{\text {st }}$ term of the sequence?
(b) What is the sum of the first 101 terms of the sequence?
\square
Answers:
(a)
(b)
13. Portable telephones are first sold in the country Cellmania in 1990. During 1990, the number of units sold is 160. In 1991, the number of units sold is 240 and in 1992, the number of units sold is 360 .

In 1993 it was noticed that the annual sales formed a geometric sequence with first term 160, the 2nd and 3rd terms being 240 and 360 respectively.
(a) What is the common ratio of this sequence?

Assume that this trend in sales continues.
(b) How many units will be sold during 2002?
(c) In what year does the number of units sold first exceed 5000 ?

Between 1990 and 1992, the total number of units sold is 760 .
(d) What is the total number of units sold between 1990 and 2002?

During this period, the total population of Cellmania remains approximately 80000.
(e) Use this information to suggest a reason why the geometric growth in sales would not continue.
14. Each day a runner trains for a 10 km race. On the first day she runs 1000 m , and then increases the distance by 250 m on each subsequent day.
(a) On which day does she run a distance of 10 km in training?
(b) What is the total distance she will have run in training by the end of that day? Give your answer exactly.

Answers:
(a)
(b) \qquad
(Total 4 marks)
15. In an arithmetic sequence, the first term is 5 and the fourth term is 40 . Find the second term.

Answer:
(Total 4 marks)
16. Find the sum of the infinite geometric series

$$
\frac{2}{3}-\frac{4}{9}+\frac{8}{27}-\frac{16}{81}+\ldots
$$

Answer:
(Total 4 marks)
17. The Acme insurance company sells two savings plans, Plan A and Plan B.

For Plan A, an investor starts with an initial deposit of $\$ 1000$ and increases this by $\$ 80$ each month, so that in the second month, the deposit is $\$ 1080$, the next month it is $\$ 1160$ and so on.

For Plan B, the investor again starts with $\$ 1000$ and each month deposits 6% more than the previous month.
(a) Write down the amount of money invested under Plan B in the second and third months.

Give your answers to parts (b) and (c) correct to the nearest dollar.
(b) Find the amount of the 12th deposit for each Plan.
(4)
(c) Find the total amount of money invested during the first 12 months
(i) under Plan A ;
(ii) under Plan B.
18. $\$ 1000$ is invested at the beginning of each year for 10 years.

The rate of interest is fixed at 7.5\% per annum. Interest is compounded annually.
Calculate, giving your answers to the nearest dollar
(a) how much the first $\$ 1000$ is worth at the end of the ten years;
(b) the total value of the investments at the end of the ten years.

19. Find the sum of the arithmetic series

$$
17+27+37+\ldots+417
$$

\square
Answer:
(Total 4 marks)
20. An arithmetic series has five terms. The first term is 2 and the last term is 32 . Find the sum of the series.
\square
Answer:
(Total 4 marks)

