\qquad
\qquad Date \qquad

3.1A	Response variable A response variable measures the \qquad of a study.
3.1A	Explanatory variable An explanatory variable may help \qquad changes in a response variable.
3.1A	Identify the explanatory and response variables in each setting. 1. How does drinking beer affect the level of alcohol in our blood? The legal limit for drinking in all states is 0.08%. In a study, adult volunteers drank different numbers of cans of beer. Thirty minutes later, a police officer measured their blood alcohol levels. explanatory variable response variable 2. The National Student Loan Survey provides data on the amount of debt for recent college graduates, their current income, and how stressed they feel about college debt. A sociologist looks at the data with the goal of using amount of debt and income to explain the stress caused by college debt. explanatory variable response variable 3. Julie wants to know if she can predict a student's weight from his or her height because information about height is easier to obtain than information about weight! explanatory variable response variable
3.1A	Scatterplots Scatterplots are graphs used to display the relationship between two \qquad variables. (For categorical variables, we used two-way tables) - Explanatory variable should be graphed on the \qquad - Response variable should be graphed on the \qquad - ALWAYS label your axes!
3.1A	Interpreting scatterplots - Direction - a.) Positive association - " \qquad " as explanatory variable increases \qquad the response variable. b.) negative association - " \qquad " as explanatory variable increases the response variable \qquad . - Form \qquad ? - Strength How close do the points come to forming a \qquad or forming a continuous \qquad ? - Outliers Outliers are points that are outside the general pattern of the scatterplot. Usually really far \qquad the grouping of points. Influential points Another type of outlier that lies outside (\qquad) the grouping of points.

Analyzing Scatterplots

Can you tell a person's age from a blood test? Analyze the scatterplot.

3.1B	Correlation - "r" value The correlation "r" measures the \qquad of the \qquad relationship between two quantitative variables. It measures "How close the data comes to forming a straight line" Facts about correlation: - Correlation (r) is always between and - A correlation of zero means there is \qquad pattern whatsoever - The closer the number gets to 1 , the closer the dots come to forming a straight line with \qquad slope (\qquad association) - The closer the number gets to -1 , the closer the dots come to forming a straight line with \qquad slope (\qquad association) - Correlation is a numerical way to measure the \qquad of a scatterplot. $r=$ $r=$ $r=$ $r=$ $r=$ $r=$
	SAMPLE: A recent study discovered that the correlation between the age at which an infant first speaks and the child's score on an IQ test upon entering elementary school is -0.68 . A scatterplot of the data show a linear form. Which of the following statements about this finding is correct? (a) Infants who speak at very early ages will have higher IQ scores by the beginning of elementary school than those who speak later. (b) 68% of the variation in IQ test scores is explained by the least squares regression of age at first word spoken and IQ score. (c) Encouraging infants to speak before they are ready can have a detrimental effect later in life, as evidenced by their lower IQ scores. (d) There is a moderately strong, negative linear association between age at first spoken word and later IQ test score for the individuals in this study.

3.2A
 Trend Line

A trend line is a line that \qquad the data from a scatterplot. What happens if you can't tell which trend line best represents the data? We analyze the \qquad between the actual points and the line. We \qquad those deviations (to get rid of the negative values) and add those values together. The line with the lowest (least sum) is called the Least Squares Regression Line.

We can use our calculator to calculate the regression line, which can also calculate a residual for us.

- Enter your x-values (explanatory) into List 1 and your y-values (response) into List 2
- Stat
- Calc
- Arrow down to LinReg (ax+b) OR LinReg (a+bx)
- Select L1 for x list, L2 for y list, leave FreqList blank, Store RegEQ (this is to graph the line with your scatterplot, if you want to graph it - hit VARS, Y-VARS, Function, Y1
- Hit enter
- It will give you the parts for your equation, r which is the correlation, and r^{2} which we talk about later.

3.2A

Interpreting a regression line
Regression lines are usually written in the form:

Where \mathbf{b}_{0} is your y -intercept
Interpret y-intercept: (response value) when your (explanatory value) is zero
Where \mathbf{b}_{1} your slope/rate of change

Interpret slope:

(response variable) changes by \qquad for every increase of 1 in (explanatory variable)

Sample Problem: Used Hondas

The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com).

Thousand Miles Driven	Cost (dollars)
22	17998
29	16450
35	14998
39	13998
45	14599
49	14988
55	13599
56	14599
69	11998
70	14450
86	10998

a) Use the calculator to find the equation of the regression line.

What is the correlation?

What is the equation? In context?
b.) Interpret the slope in context:
c.) Interpret the y-intercept in context:

3.2A	Predicting from a regression line The purpose of having a regression equation is to able to \qquad what the response value MIGHT be with a certain explanatory value. That is why we use the symbol (y) instead y. - " y " is the \qquad from the scatterplot - $y($ \qquad) is the \qquad based on the regression line. The difference (\qquad) also $(y-y)$ is called the \qquad and is the same as the vertical deviation used for the least squares regression line. Sample: Using the previous problem, predict the price for a car with 49,000 miles. Compare that to the actual price.
3.2A	Extrapolation Extrapolation occurs when you use the regression line to predict for a value \qquad the data's domain (x-values). If you only have data for the explanatory variable from 10 to 50 , you CANNOT predict a value lower than 10 , or higher than 50 . Since we \qquad the behavior of the data outside this domain, we take a huge risk trying to predictions outside those values. Sample: Using the previous problem, should we predict the asking price for a used 2002-2006 Honda CR-V with 250,000 miles? Explain.
3.2B	Residuals of the least-squares regression line A residual is the difference between an observed (Actual) value of the response variable and the value Predicted by the regression line. - A negative residual means we \qquad the response value - A positive residual means we \qquad the response value Sample: Back to the Track The equation of the least-squares regression line for the sprint time (x) and long-jump distance (y) data is $y=304.56-27.63 x$. Find and interpret the residual for the student who had a sprint time of 8.09 seconds.

We have used technology to find the least-squares regression line, but we can also find it using means, standard deviations, and their correlation.

If we know the mean (\bar{x}) and standard deviation $\left(S_{x}\right)$ of our explanatory variable, mean (\bar{y}) and standard deviation (S_{y}) of our response variable, and their correlation (r) then the equation of the least-squares regression line

- With
- Slope y-intercept
- All least-squares regression lines will run through the point

Sample: Used Hondas The number of miles (in thousands) for the 11 used Hondas has a mean of 50.5 and a standard deviation of 19.3. The asking prices had a mean of $\$ 14,425$ and a standard deviation of $\$ 1,899$. The correlation for these variables is $r=-0.874$.
a) Find the equation of the least-squares regression line
b) Explain what change in price we would expect for each additional 19.3 thousand miles.

What happens if we standardize both variables?
We can standardize by changing all values to \qquad which will have a mean of 0 and a standard deviation of 1
A) slope will become
B)

There is another numerical quantity that tells us \qquad the least-squares regression line predicts values of the response y. It also happens to be the correlation \qquad .

We interpret this value
"The regression line accounts for __\% of the variation in the (response variable)."

The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs

Thousand Miles Driven	Cost (dollars)
22	17998
29	16450
35	14998
39	13998
45	14599
49	14988
55	13599
56	14599
69	11998
70	14450
86	10998

-
-

-
-
a) Enter the values into your lists and graph the scatterplot on your calculator.
b.) Use the calculator to find the equation of the regression line.

What is the equation?
What is the correlation?

What is the coefficient of determination?
Interpret the coefficient of determination:

Practice:

1. For the least squares regression of fat gain from Non-Exercise Activity, $r^{2}=0.606$. Which of the following gives the correct interpretation in context?
(a) 60.6% of the points lie on the least squares regression line.
(b) 60.6% of the fat gain values are accounted for by the least squares line.
(c) 60.6% of the variation in fat gain is accounted for by the least squares line.
(d) 60.6% of the variation in Non-exercise Activity is accounted for by the least squares line
3.2C Standard deviation of the residuals - "S"

Standard deviation of the residuals gives us the

$$
s=\sqrt{\frac{\sum_{\text {residuals }}{ }^{2}}{n-2}}=\sqrt{\frac{\sum\left(y_{i}-\hat{y}\right)^{2}}{n-2}}
$$

Interpreting "s" -
"the average error in predicting (response variable) is \qquad (s) using the least squares regression line"

Sample: Used Hondas

Thousam Miles Driven	Cost (dollars)
22	17998
29	16450
35	14998
39	13998
45	14599
49	14988
55	13599
56	14599
69	11998
70	14450
86	10998

The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com).
A) Enter the values into your lists
B) Calculate the linear regression
C) Back in your lists, highlight L3, $2^{\text {nd }}$ stat (list), arrow down to RESID, enter, enter
D) Your L3 now has all of your residuals
F) To calculate s - the standard deviation of the residuals

Calculate the one-variable statistics of L3 (or just RESID)
(stat, calc, 1-var stat)
G) Interpret the s value

3.2D Computer output of regression line

Many times you will be presented with numerical information from different sources: graphing calculators, fathom, mini-tab, JMP. Let's look at several examples to see if you can find information.
Example: Body Weight and Pack Weight
Minitab Output:

Predictor	Coef	SE Coef	T	P
Constant	16.265	3.937	4.13	0.006
Body Weight	0.09080	0.02831	3.21	0.018
$S=2.26954$	$\mathrm{R}-\mathrm{Sq}=63.28$	$\mathrm{R}-\mathrm{Sq}(\mathrm{adj})=57.08$		

1. What is the equation for the regression line?
2. What is the typical prediction error?
3. What is the coefficient of determination?
4. What is the correlation?

Alternate Example: Used Hondas

Minitab Output:

Predictor	Coef	SE Coef	T	P
Constant	18773.3	856.2	21.93	0.000
Miles	-86.18	15.95	-5.40	0.000
$S=971.647$	$R-S q$	$=76.48$	$R-S q(a d j)=73.8 \%$	

1. What is the equation for the regression line?
2. What is the typical prediction error?
3. What is the coefficient of determination?
4. What is the correlation?

JMP Output: Age and reading scores
Summary of Fit

RSquare	0.409971				
RSquare Adj	0.378917				
Root Mean Square Error	11.02291				
Mean of Response	93.66667				
Observations (or Sum Wgts)	21				
Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob>\|t	
Intercept	109.87384	5.067802	21.68	$<.0001$	
Age	-1.126989	0.310172	-3.63	0.0018	

1. What is the equation for the regression line?
2. What is the typical prediction error?
3. What is the coefficient of determination?
4. What is the correlation?

Correlation and regression are powerful tools for describing the relationship between two variables. When you use these tools, be aware of their \qquad .

1. The distinction between explanatory and response variables is important in regression.

2. Correlation and regression lines describe only \qquad relationships. Be careful about calculating without \qquad the data! All of the data sets below have a regression equation of $y=3+0.5 x$

3. Correlation and least-squares regression lines are \qquad $!$

| 3.2 D | Association vs causation
 Association does not imply CAUSATION!
 An association between an explanatory variable x and a response variable y, even if it is very strong, is
 not by itself good evidence that changes in x actually cause changes in y. |
| :--- | :--- | :--- |
| A serious study once found
 that people with two cars live
 longer than people who only
 own one car. Owning three
 cars is even better, and so on.
 There is a substantial positive
 correlation between number of
 cars x and length of life y.
 Why? | |

