Name _		
Per	_Date _	

3.1A	Response variable			
	A response variable measures the of a study.			
3.1A	Explanatory variable			
	An explanatory variable may help changes in a response variable.			
0.44				
3.1A	Identify the explanatory and response variables in each setting.			
	1. How does drinking beer affect the level of alcohol in our blood? The legal limit for drinking in all			
	states is 0.08%. In a study, adult volunteers drank different numbers of cans of beer. I ninty minutes			
	explanatory variable			
	response variable			
	2. The National Student Loan Survey provides data on the amount of debt for recent college graduates,			
	their current income, and how stressed they feel about college debt. A sociologist looks at the data with			
	the goal of using amount of debt and income to explain the stress caused by college debt.			
	explanatory variable			
	raananaa variahla			
	response variable			
	3. Julie wants to know if she can predict a student's weight from his or her height because information			
	about height is easier to obtain than information about weight!			
	explanatory variable			
	response variable			
0.44				
3.1A	Scatterplots			
	Scatterplots are graphs used to display the relationship between two variables.			
	Explanatory variable should be graphed on the			
	Response variable should be graphed on the			
	Al WAYS label your axes!			
3.1A	Interpreting scatterplots			
	Direction –			
	a.) Positive association – "" as explanatory variable increases			
	the response variable.			
	b.) negative association – " " as explanatory variable increases the			
	response variable			
	• Form			
	2			
	- Strongth			
	• Strength How along do the pointe some to forming a			
	Outliers are points that are outside the general pattern of the scatterplot. Usually really far			
	the grouping of points.			
	Influential points			
	Another type of outlier that lies outside () the grouping of points.			

3.1B	Calculating correlation	ing formula:
	The correlation coefficient 1 is calculated using the follow $\sum_{7,7,7}$	ing formula.
	$r = \frac{\sum x_x x_y}{1}$	-
	n-1	
	$\sum z_x z_y$ is found by multiplying z_x and z_y for each observ	ation in the data set and then adding the
	$z_x z_y$ values.	
3.1B	Calculate the correlation for the following data set	
	Body weight (lb): 120 187 109 103 131 165 Backpack weight (lb): 26 30 26 24 29 35	158 116 31 28
		<u>, 10</u>
	 Put the values for body weight into list 1, backpack 	s 36 -
	weight into list 2.	34- (g. 32-
	 First calculate the mean and standard deviation for each list using 1 variable state; 	「 + 50-
	Body weight	2 73 - YD, 26 -
	mean = 136.125, standard deviation = 30.3	24- •
	Backpack weight	
	 Calculate the z-score for each 	100 110 120 130 140 150 160 170 180 190 Body weight (1b)
	Multiply the z-scores	
	Body Weight Backpack weight	Multiply Z-scores (15 = 1.2*1.4)
	(120 - 136.125) = -0.532 $(26 - 28.625) = -0.759$	0.404
		0.007
	$\left(\frac{187-136.125}{30.3}\right) = 1.679$ $\left(\frac{30-28.625}{3.46}\right) = 0.397$	0.667
	(109 - 136.125) = 0.805 $(26 - 28.625) = 0.750$	0.679
	$\left(\frac{103 - 136.125}{30.3}\right) = -1.093 \qquad \left(\frac{24 - 28.625}{3.46}\right) = -1.337$	1.461
	$\left(\frac{131-136.125}{30.3}\right) = -0.169 \qquad \left(\frac{29-28.625}{3.46}\right) = 0.108$	-0.183
	$\left(\frac{165 - 136.125}{20.2}\right) = 0.953 \qquad \left(\frac{35 - 28.625}{2.46}\right) = 1.843$	1.756
	$\left(\frac{158 - 136.125}{253}\right) = 0.722 \qquad \left(\frac{31 - 28.625}{253}\right) = 0.686$	0.496
	(30.3) (3.46)	0.120
	$\left(\frac{110-130.125}{30.3}\right) = -0.664$ $\left(\frac{23-23.025}{3.46}\right) = -0.181$	0.120
	• Add the last column: (stat, calc, 1 var stats, L5) =	$\sum x = 5.565$
	 Divide the summation by n-1 = number of values – 	- 1 = 8 – 1
	• r = 5.565/7 = 0.795	
3.1B	Facts about correlation	
	1. Both values MUST be, corre	elation does not work for categorical data.
	2. If you switch your response variable and explanate	bry variable, the correlation change.
	4 Correlation has unit of measure	allon change.
	5. A correlation close to 1, does not guarantee that it	is
	6. It is by outliers since the mean	and standard deviation (which are used to
	calculate correlation) are affected by outliers.	`
	7. Correlation only measures how close the data fits	to a, not how it fits to a curve.

0.21					
	A trand line is a line that the data from a scatterplat. What happens if you can't tell which				
	A trend line is a line that the data from a scatterplot. What happens if you can't tell which				
	trend line best represents the data? we analyze the between the actual points				
	and the line. We those deviations (to get rid of the negative values) and add those				
	values together. The line with the lowest (least sum) is called the Least Squares Regression Line .				
	36 7				
	³⁶ The least-squares				
	34 – Data point 34 – regression line				
	Vertical deviation				
	= 32 - from the line the squared residuals.				
	Regression line				
	$\hat{y} = 16.3 + 0.0908x$				
	24 - 24 -				
	100 120 140 160 180 200 100 120 140 100 160 200				
	Body weight (Ib) Body weight (Ib)				
ĺ	We can use our calculator to calculate the regression line, which can also calculate a residual for us.				
	 Enter your x-values (explanatory) into List 1 and your y-values (response) into List 2 				
	Stat				
	Calc				
	 Arrow down to LinReg (ax+b) OR LinReg (a+bx) 				
	• Select I 1 for x list I 2 for y list leave FreqList blank. Store RegEQ (this is to graph the line with				
	vour scatterplot, if you want to graph it – hit VARS, Y-VARS, Function, Y1				
	Hit optor				
	• The check				
	• It will give you the parts for your equation, I which is the correlation, and I which we talk about				
	later.				
0.04	Internation o regression line				
4 7/1	Interpreting a regression line				
J.2A					
J.2A	Regression lines are usually written in the form:				
5.ZA	Regression lines are usually written in the form:				
5.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept				
3.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept				
3.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero				
3.2A	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change				
3.2A	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope:				
3.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable)				
3.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable)				
3.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable) Sample Problem: Used Hondas				
3.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable) Sample Problem: Used Hondas The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs				
5.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable) Sample Problem: Used Hondas The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com).				
5.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable) Sample Problem: Used Hondas The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com).				
3.2A	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable) Sample Problem: Used Hondas The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com). Thousand Miles a) Use the calculator to find the equation of the regression line.				
5.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable) Sample Problem: Used Hondas The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com). (miles) a) Use the calculator to find the equation of the regression line. What is the correlation?				
5.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable) Sample Problem: Used Hondas The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com). a) Use the calculator to find the equation of the regression line. What is the correlation?				
3.2A	Regression lines are usually written in the form: Where b_0 is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b_1 your slope/rate of change Interpret slope: Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable) Sample Problem: Used Hondas The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com). a) a) Use the calculator to find the equation of the regression line. What is the correlation? What is the orgunation?				
3.2A	Regression lines are usually written in the form:Where b_0 is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zeroWhere b_1 your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable)Sample Problem: Used HondasThe following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com).a)a)Use the calculator to find the equation of the regression line. What is the correlation?What is the equation? In context?				
3.2A	Regression lines are usually written in the form:Where \mathbf{b}_0 is your y-interceptInterpret y-intercept: (response value) when your (explanatory value) is zeroWhere \mathbf{b}_1 your slope/rate of changeInterpret slope:(response variable) changes by for every increase of 1 in (explanatory variable)Sample Problem: Used HondasThe following data show the number of miles driven and advertised price for 11 used Honda CR-Vsfrom the 2002-2006 model years (www.carmax.com).a) Use the calculator to find the equation of the regression line.What is the correlation?What is the equation? In context?				
3.2A	Regression lines are usually written in the form:Where \mathbf{b}_0 is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where \mathbf{b}_1 your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable)Sample Problem: Used HondasThe following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com).a)a)Use the calculator to find the equation of the regression line. What is the correlation?What is the equation?What is the equation? In context?				
3.24	Regression lines are usually written in the form:Where \mathbf{b}_0 is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zeroWhere \mathbf{b}_1 your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable)Sample Problem: Used HondasThe following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com).a)a)Use the calculator to find the equation of the regression line. What is the correlation? What is the equation? In context?What is the equation? In context?				
3.2A	Regression lines are usually written in the form:Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable)Sample Problem: Used HondasThe following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com).a)a)Use the calculator to find the equation of the regression line. What is the correlation?a)Use the calculator to find the equation of the regression line. What is the equation?b.)Interpret the slope in context:				
3.2A	Regression lines are usually written in the form:Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable)Sample Problem: Used HondasThe following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com).Thusand Driven (dollar) 229 16430 35 14998 35 14998 43 14399 43 14399 				
3.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable) Sample Problem: Used Hondas The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com). a) Use the calculator to find the equation of the regression line. What is the equation? What is the equation? What is the equation? In context? b.) Interpret the slope in context:				
3.24	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable) Sample Problem: Used Hondas The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com). a) a) Use the calculator to find the equation of the regression line. What is the correlation? a) Use the calculator to find the equation? what is the equation? In context? b.) Interpret the slope in context:				
3.2A	Regression lines are usually written in the form: Where b ₀ is your y-intercept Interpret y-intercept: (response value) when your (explanatory value) is zero Where b ₁ your slope/rate of change Interpret slope: (response variable) changes by for every increase of 1 in (explanatory variable) Sample Problem: Used Hondas The following data show the number of miles driven and advertised price for 11 used Honda CR-Vs from the 2002-2006 model years (www.carmax.com). Image: transmit the calculator to find the equation of the regression line. What is the correlation? What is the equation? In context? What is the eluation? In context: b.) Interpret the slope in context: c.) Interpret the y-intercept in context:				

3.2A	Predicting from a regression line				
	The purpose of having a regression equation is to able to what the response value				
	MIGHT be with a certain explanatory value. That is why we use the symbol $ig(yig)$ instead y .				
	"y" is the from the scatterplot				
	• y () is the based on the regression line.				
	The difference () also $(y-y$) is called the and is the				
	same as the vertical deviation used for the least squares regression line.				
	Sample: Using the previous problem, predict the price for a car with 49,000 miles. Compare that to the actual price.				
3.2A	Extrapolation Extrapolation occurs when you use the regression line to predict for a value the data's domain (x-values). If you only have data for the explanatory variable from 10 to 50, you CANNOT predict a value lower than 10, or higher than 50. Since we the behavior of the data outside this domain, we take a huge risk trying to predictions outside those values.				
	Sample: Using the previous problem, should we predict the asking price for a used 2002-2006 Honda				
	CR-V with 250,000 miles? Explain.				
0.05					
3.2B	A residual is the difference between an observed (Actual) value of the response variable and the value				
	Predicted by the regression line.				
	A negative residual means we the response value				
	A positive residual means we the response value				
	Sample: Back to the Track				
	Sprint Time (a) $5.41 + 5.05 + 0.40 + 8.00 + 7.01 + 7.17 + 6.92 + 6.72 + 8.01 + 5.68 + 5.78 + 6.21 + 6.04$				
	Sprint rine (s) 5.41 5.05 5.49 6.09 7.01 7.17 6.03 6.01 5.06 5.78 6.31 6.04 Long Jump Distance (in) 171 184 48 151 90 65 94 78 71 130 173 143 141				
	The equation of the least-squares regression line for the sprint time (x) and long-jump distance (y) data				
	is $y = 304.56 - 27.63x$. Find and interpret the residual for the student who had a sprint time of 8.09				
	seconds.				

3.2B	Calculating regression with means and standard deviation		
	We have used technology to find the least-squares regression line, but we can also find it using means, standard deviations, and their correlation.		
	If we know the mean (x) and standard deviation (S_x) of our explanatory variable, mean (y) and		
	standard deviation (S_y) of our response variable, and their correlation (r) then the equation of the		
	least-squares regression line		
	• With		
	Slope		
	v-intercept		
	y intercept		
	All least-squares regression lines will run through the point		
	Sample: Used Hondas The number of miles (in thousands) for the 11 used Hondas has a mean of 50.5 and a standard deviation of 19.3. The asking prices had a mean of \$14.425 and a standard		
	deviation of \$1,899. The correlation for these variables is $r = -0.874$.		
	a) Find the equation of the least-squares regression line		
	a) Find the equation of the least-squares regression line		
	b) Explain what change in price we would expect for each additional 19.3 thousand miles.		
	What happens if we standardize both variables?		
	a standard deviation of 1		
	A) slope will become		
	B)		

Many times you will be presented with numerical information from different sources: graphing calculators, fathom, mini-tab, JMP. Let's look at several examples to see if you can find information Example: Body Weight and Pack Weight	ation.
Minitab Output:	
Predictor Coef SE Coef T P Constant 16.265 3.937 4.13 0.006 Body Weight 0.09080 0.02831 3.21 0.018	
S = 2.26954 R-Sq = 63.2% R-Sq(adj) = 57.0%	
1. What is the equation for the regression line?	
2. What is the typical prediction error?	
3. What is the coefficient of determination?	
4. What is the correlation?	
Alternate Example: Used Hondas	
Minitab Output:	
Predictor Coef SE Coef T P Constant 18773.3 856.2 21.93 0.000 Miles -86.18 15.95 -5.40 0.000	
S = 971.647 R-Sq = 76.4% R-Sq(adj) = 73.8%	
1. What is the equation for the regression line?	
2. What is the typical prediction error?	
3. What is the coefficient of determination?	
4. What is the correlation?	
THE OWNER AND	
Summer of Fit	
RSquare 0.409971 RSquare Adj 0.378917 Root Mean Square Error 11.02291 Mean of Response 93.66667 Observations (or Sum Wats) 21	
Parameter Estimates Term Estimate Std Error t Ratio Prob> t Intercept 109.87384 5.067802 21.68 <0001 Age -1.126989 0.310172 -3.63 0.0018	
1. What is the equation for the regression line?	
2. What is the typical prediction error?	
3. What is the coefficient of determination?	
4. What is the correlation?	

3.2D Association vs causation Association does not imply CAUSATION! An association between an explanatory variable x and a response variable y, even if it is very strong, is not by itself good evidence that changes in x actually cause changes in y. Image: A serious study once found that people with two cars live longer than people who only own one car. Owning three cars is even better, and so on. There is a substantial positive correlation between number of cars x and length of life y. Why?