

## Chapter 7: Sampling Distributions

Section 7.2
Sample Proportions
The Practice of Statistics, $4^{\text {th }}$ edition - For AP* STARNES, YATES, MOORE

## Chapter 7 Sampling Distributions

- 7.1 What is a Sampling Distribution?
- 7.2 Sample Proportions
- 7.3 Sample Means


## Section 7.2

## Sample Proportions

## Learning Objectives

After this section, you should be able to...
$\checkmark$ FIND the mean and standard deviation of the sampling distribution of a sample proportion
$\checkmark$ DETERMINE whether or not it is appropriate to use the Normal approximation to calculate probabilities involving the sample proportion
$\checkmark$ CALCULATE probabilities involving the sample proportion
$\checkmark$ EVALUATE a claim about a population proportion using the sampling distribution of the sample proportion

## The Sampling Distribution of $\hat{p}$

How good is the statistic $\hat{p}$ as an estimate of the parameterp? The sampling distribution of $\hat{p}$ answers this question.
Consider the approximate sampling distributions generated by a simulation in which SRSs of Reese's Pieces are drawn from a population whose proportion of orange candies is either 0.45 or 0.15 .

What do you notice about the shape, center, and spread of each?

$\hat{p}=0.24$


Current Sample: 400


$\hat{\mathrm{p}}=0.18$
sample size:
num samples:
$\pi$ :
(b)

## The Sampling Distribution of $\hat{p}$

What did you notice about the shape, center, and spread of each sampling distribution?

Shape: In some cases,the sampling distribution of $\hat{p}$ can be approximated by a Normal curve. This seems to depend on both th sample size $n$ and the population proportion $p$.

Center : The mean of the distribution is $\mu_{\hat{p}}=p$. This makes sens because the sample proportion is an unbiased estimator of.

Spread: For a specific value of $p$, the standard deviation $\sigma_{\hat{p}}$ gets smaller as $n$ gets larger. The value of $\sigma_{\hat{p}}$ depends on both $n$ and $p$.

There is and important connection between the sample proportio $\hat{p}$ and the number of "successes" $X$ in the sample.

$$
\hat{p}=\frac{\text { count of successes in sample }}{\text { size of sample }}=\frac{X}{n}
$$

## The Sampling Distribution of $\hat{p}$

In Chapter 6, we learned that the mean and standard deviation of a binomial random variable $X$ are

$$
\mu_{X}=n p \quad \sigma_{X}=\sqrt{n p(1-p)}
$$

Since $\hat{p}=X / n=(1 / n) \cdot X$, we are just multiplying the random variable $X$ by a constant $(1 / n)$ to get the random variable $\hat{p}$. Therefore,

$$
\begin{aligned}
& \mu_{\hat{p}}=\frac{1}{n}(n p)=p \quad \hat{p} \text { is an unbiased estin } \\
& \sigma_{\hat{p}}=\frac{1}{n} \sqrt{n p(1-p)}=\sqrt{\frac{n p(1-p)}{n^{2}}}=\sqrt{\frac{p(1-p)}{n}}
\end{aligned}
$$

As sample size increases, the spread decreases.

## The Sampling Distribution of $\hat{p}$

We can summarize the facts about the sampling distributior of $\hat{p}$ as follows:


Population proportion $p$
of successes
$\longleftarrow$ Values of $\hat{p}$

## Using the Normal Approximation for $\hat{p}$

Inference about a population proportion is based on the sampling distribution of $\hat{p}$. When the sample size is large enough fornp and $n(1-p)$ to both be at least 10 (the Normal condition)the sampling distribution of $\hat{p}$ is approximately Normal.

STEP
A polling organization asks an SRS of 1500 first-year college students how far away their home is. Suppose that $35 \%$ of all first-year students actually attend college within 50 miles of home. What is the probability that the random sample of 1500 students will give a result within 2 percentage points of this true value?
STATE: We want to find the probability that the sample proportion falls between 0.33 and 0.37 (within 2 percentage points, or 0.02 , of 0.35 ).
PLAN: We have an SRS of size $n=1500$ drawn from a population in which the proportion $p=0.35$ attend college within 50 miles of home.


$$
\mu_{\hat{p}}=0.35
$$

$$
\sigma_{\hat{p}}=\sqrt{\frac{(0.35)(0.65)}{1500}}=0.0123
$$

DO: Since $n p=1500(0.35)=525$ and $n(1-p)=$ $1500(0.65)=975$ are both greater than 10, we'll standardize and then use Table A to find the desired probability.

$$
z=\frac{0.33-0.35}{0.123}=-1.63 \quad z=\frac{0.37-0.35}{0.123}=1.63
$$

$$
P(0.33 \leq \hat{p} \leq 0.37)=P(-1.63 \leq Z \leq 1.63)=0.9484-0.0516=0.8968
$$

CONCLUDE: About $90 \%$ of all SRSs of size 1500 will give a result within 2 percentage points of the truth about the population.

## Alternate Example - Planning for College

The superintendent of a large school district wants to know what proportion of middle school students in her district are planning to attend a four-year college or university. Suppose that $80 \%$ of all middle school students in her district are planning to attend a four-year college or university. What is the probability that a SRS of size 125 will give a result within 7 percentage points of the true value?

STATE: We want to find the probability that the proportion of middle school students who plan to attend a four-year college or university falls between $73 \%$ and $87 \%$.
That is, $P(0.73 \leq \mathrm{p} \leq 0.87)$.
PLAN: Because the school district is large, we can assume that there are more than $10(125)=1250$ middle school students so

$$
\mu_{\hat{p}}=0.80 \quad \sigma_{\hat{p}}=\sqrt{\frac{(0.80)(0.20)}{125}}=0.036
$$

We can consider the distribution of $\hat{p}$ to be approximately Normal since $\mathrm{np}=125(0.80)=100 \geq 10$ and $\mathrm{n}(1-\mathrm{p})=125(0.20)=25 \geq 10$.

$$
\text { DO: } P(0.73 \leq \hat{p} \leq 0.87)=\text { normalcdf }(0.73,0.87,0.80,0.036)=0.948
$$

(Note: To get full credit when using normalcdf on an AP exam question, students must explicitly state the mean and standard deviation of the distribution as in the Plan step above.)

CONCLUDE: About 95\% of all SRSs of size 125 will give a sample proportion within 7 percentage points of the true proportion of middle school students who are planning to attend a four-year college or university.

## Section 7.2

## Sample Proportions

## Summary

In this section, we learned that...
When we want information about the population proportionp of successes,we
$\checkmark$ often take an SRS and use the sample proportion $\hat{p}$ to estimate the unknown parameter $p$. The sampling distribution of $\hat{p}$ describes how the statistic varies in all possible samples from the population.

The mean of the sampling distribution of $\hat{p}$ is equal to the population proportion $p$. That is, $\hat{p}$ is an unbiased estimator of $p$.
The standard deviation of the sampling distribution of $\hat{p}$ is $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$ for an SRS of size $n$. This formula can be used if the population is at least 10 time: as large as the sample (the $10 \%$ condition). The standard deviation o $\$$ gets smaller as the sample sizen gets larger.
When the sample size $n$ is larger, the sampling distribution of $\hat{p}$ is close to a Normal distribution with mean $p$ and standard deviation $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$.
$\checkmark$ In practice, use this Normal approximation when both $n p \geq 10$ and $n(1-p) \geq 10$ (the Normal condition).

## Looking Ahead...

## In the next Section...

We'll learn how to describe and use the sampling distribution of sample means.

We'll learn about
$\checkmark$ The sampling distribution of $\bar{x}$
$\checkmark$ Sampling from a Normal population
$\checkmark$ The central limit theorem

