## Concept Check 5.3

Name: ANSWER K

1. What age groups use social networking sites? A recent study produced the following data about 768 individuals who were asked their age and which of three social networking sites they used most often. (People who did not use such sites were excluded from the study).

| ·        |        | Age     | Group   |         |        |
|----------|--------|---------|---------|---------|--------|
| Website  | 0 - 24 | 25 – 44 | 45 – 64 | Over 65 | Totals |
| Facebook | 77     | 105     | 114     | 12      | 308    |
| Twitter  | 46     | 110     | 81      | . 7     | 244    |
| LinkedIn | 15     | 97      | 95      | 9       | 216    |
| Totals   | 138    | 312     | 290     | 28      | 768    |

Suppose one subject from this study was selected at random.

(a) Find the probability that the selected subject preferred Twitter.

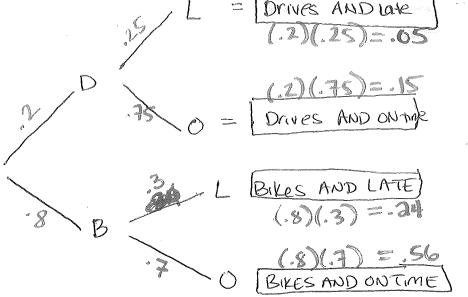
(b) Find the probability that the selected subject preferred Twitter, given that he or she was in the 45 – 64 ag roup.

(c) Are the events "preferred Twitter" and "age group 45 – 64" independent? Explain.

$$P(A|B) = P(A)$$

$$P(Twitter | 45-64) = P(Twitter)$$
NoT independent
$$.2793 \neq .3177$$
(d) Are the events "preferred Twitter" and "age group 45 – 64" mutually exclusive? Explain.
$$NoT DisJoinT$$
Since the events and age group 45 – 64" mutually exclusive? Twitter & age

(e) If a random sample of two subjects were selected, what is the probability that neither preferred Twitter?


$$P(T^{c}) = \frac{524}{768}$$
  $\left(\frac{524}{767}\right) \cdot \left(\frac{523}{767}\right) = .4652$ 

2. Some days, Ramon drives to work. The rest of the time he rides his bike. Suppose we choose a random work day. The following table gives the probabilities of several events.

| Event                         | Probability              |
|-------------------------------|--------------------------|
| Drives to work                | 0.20                     |
| Drives and is late for work   | 0.05                     |
| Late for work, given he bikes | $0.30 \qquad D = Drives$ |

(a) Draw a tree diagram to summarize the given probabilities and those you determined above.

L=Late



(b) Find the probability that Ramon is late for work, given that he drives.

$$P(L|D) = \frac{P(L \text{ and } D)}{P(D)} = \frac{.05}{.20} = .25$$

(c) Find the probability that Ramon drove to work, given he was not late.

$$P(D|O) = \frac{P(D \text{ and } O)}{P(O)} = \frac{.15}{.50 + .15} = \frac{.15}{.71} =$$